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Abstract 

Background: Pediatric radiology is crucial in diagnosing and treating medical conditions in children, yet it 

poses unique challenges due to the heightened sensitivity of younger patients to ionizing radiation. The "as 

low as reasonably achievable" (ALARA) principle emphasizes minimizing radiation exposure while 

ensuring diagnostic efficacy. 

Methods: This study systematically reviews literature on artificial intelligence (AI) applications for 

radiation dose optimization in pediatric imaging. An electronic search across multiple databases (PubMed, 

ScienceDirect, etc.) was conducted using keywords related to AI, dose reduction, and pediatrics, focusing 

on studies published after 2017. 

Results: The review identified significant advancements in AI methodologies, particularly deep learning 

techniques, which have demonstrated potential in reducing radiation doses by 36% to 95% across various 

imaging modalities, including CT and PET scans. Most studies indicated that AI could maintain diagnostic 

image quality while significantly lowering radiation exposure, addressing both safety and efficacy concerns 

in pediatric radiology. 

Conclusion: The findings underscore the importance of integrating AI-driven technologies in pediatric 

radiology to optimize radiation dose while ensuring high-quality imaging. Challenges remain, including the 

need for continuous education and standardization in pediatric imaging practices. Future research should 
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focus on expanding the scope of studies to include a broader range of imaging modalities and larger sample 

sizes to validate AI applications comprehensively. 

Keywords: Pediatric radiology, radiation dose optimization, artificial intelligence, deep learning, imaging 

protocols. 
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1. Introduction 

Radiology is an essential component of contemporary healthcare. Nonetheless, the majority of medical 

imaging techniques, including computed tomography (CT), positron emission tomography (PET), and 

conventional radiography, use ionizing radiation for image generation [1-4]. Despite the modest radiation 

dosage associated with these imaging modalities (<100 mSv) and the ambiguity around their actual danger, 

some epidemiological and biological investigations have shown that these radiological exams may induce 

cancer [5-8]. Consequently, "as low as reasonably achievable" (ALARA) has emerged as the foundational 

premise of radiology practice [9,10]. The International Commission on Radiological Protection (ICRP) has 

initiated the diagnostic reference levels (DRLs) program for radiological departments to identify 

examinations with radiation doses surpassing their respective DRLs and to initiate the radiation dose-

optimization process [11]. 

Pediatric radiography is a specialist domain within diagnostic imaging that addresses the distinct 

requirements of newborns, children, and adolescents. This expertise is essential because juvenile patients 

possess unique anatomical, physiological, and developmental traits in contrast to adults [12-15]. 

Consequently, imaging methods and techniques must be modified to guarantee optimum safety, precision, 

and effectiveness in a younger demographic. This study examines the significance of customized imaging 

techniques, the obstacles encountered in pediatric radiology, and the technological and methodological 

breakthroughs that improve patient care in this vulnerable population [16-18]. 

Children are not just little adults; their bodies are experiencing substantial transformations throughout 

growth. This expansion impacts several aspects that affect imaging, such as organ size, developmental stage, 

and the probability of radiation-induced harm. Pediatric patients have distinct illness prevalence and 

pathology compared to adults. Conditions such as congenital anomalies, pediatric neoplasms, and 

childhood illnesses need targeted imaging methodologies. Furthermore, pediatric patients often display 

anxiety and apprehension during imaging procedures, resulting in challenges in acquiring high-quality 

pictures. This introduces additional complexity to pediatric radiography, requiring the formulation of 

guidelines that address both physiological factors and the psychological well-being of the kid [19,20]. 

2. Obstacles in Pediatric Radiology 

Notwithstanding the progress in imaging technology and techniques, pediatric radiology encounters 

several hurdles. A major problem is the need for continuous education and training for radiologists and 

technicians in pediatric imaging methodologies and safety protocols. Consistent training guarantees that 

all personnel are informed of the latest methods for reducing radiation exposure and comprehending the 

developmental factors pertinent to pediatric patients [21-25]. 

A further problem resides in the heterogeneity in anatomy and disease among children. Pediatric 

patients exhibit a wide array of disorders that may be unfamiliar to adult patients. This requires a significant 

degree of proficiency and experience among pediatric radiologists. Continuing medical education and 

mentoring programs may mitigate this difficulty by ensuring practitioners remain informed about the 

newest advancements in the area [26,27]. 

The use of emerging technologies, including artificial intelligence (AI) and machine learning, in 

pediatric radiography offers both prospects and obstacles. Artificial intelligence systems may facilitate 

picture analysis and illness identification, thereby enhancing diagnostic precision and efficiency. 

Nonetheless, the ethical ramifications of AI in clinical practice, including issues of data privacy and the risk 
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of algorithmic bias, must be meticulously addressed to safeguard the safety and welfare of pediatric patients 

[28]. 

3. Progress in Technology and Methodology 

Recent breakthroughs in imaging technologies have dramatically improved pediatric radiology. The 

advancement of low-dose CT methodologies, including iterative reconstruction methods and computerized 

exposure management, facilitates the acquisition of high-quality images while minimizing radiation 

exposure. Advancements in MRI, such as expedited acquisition times and enhanced patient comfort 

protocols, also provide improved results in pediatric patients [29-34]. 

Furthermore, the use of portable and point-of-care imaging technology, such as handheld ultrasound 

equipment, provides the benefit of bedside imaging for critically sick neonates and infants. These advances 

enhance imaging accessibility and facilitate prompt clinical decision-making in critical circumstances. The 

radiation used in radiological exams serves as the signal source; hence, a fall in radiation levels leads to 

diminished signal strength and heightened picture noise. The dose-optimization approach traditionally 

entails adjusting several exposure and scan settings to identify those that provide the lowest radiation 

dosage while still obtaining pictures that satisfy basic diagnostic standards [33-36]. Since the advent of 

digital medical imaging, image processing has been pivotal in optimizing radiation dosage [37-39]. 

Nevertheless, conventional image processing methods cannot surmount the tradeoff between picture noise 

and spatial resolution [9,10-12]. In recent years, artificial intelligence (AI) has been used in radiology for 

the optimization of radiation dosage. Research has shown its capacity to extend the boundaries, namely by 

further diminishing the radiation dosage without compromising picture quality, including noise and spatial 

resolution [1,6,9-12,15,16]. 

Optimizing dosage is crucial for juvenile patients due to their extended lifespan and accelerated cell 

proliferation, resulting in a two to threefold increased vulnerability to the detrimental effects of ionizing 

radiation compared to adults [17,33,36,40]. However, dosage optimization in pediatric radiography is 

complex because of significant variability in body size and composition both within and across age groups 

[4,33,41,42]. Notwithstanding its significance and complexity, it seems that just a single narrative review 

paper has been published on this subject, focusing on deep learning image reconstruction (DLIR) for dose 

optimization in pediatric CT [17]. Therefore, it is appropriate to do a comprehensive evaluation of the use 

of AI for dose optimization in pediatric radiology.  

4. Methods 

An electronic literature search was performed using scholarly databases, including Google Scholar, 

PubMed/Medline, ScienceDirect, Scopus, and Web of Science, to identify articles regarding AI for dose 

optimization in pediatric radiology. The search term that was employed was (“Machine Learning” OR “Deep 

Learning” OR “Artificial Intelligence”) AND (“Dose Reduction” OR “Dose Optimization”) AND (“Children” OR 

“Pediatric”) AND (“Radiology” OR “Medical Imaging”). The search terms were determined by the review 

emphasis. The year range was established based on a narrative assessment of the present and prospective 

uses of AI in radiology, which indicated that the utilization of AI for dosage optimization in radiology was 

not apparent before 2017 [43]. 

5. AI for radiation dose optimization  

The evaluation of AI for radiation dose optimization in pediatric radiology aligns with other previous 

narrative studies on the use of AI in radiology [17,43]. The 2018 narrative review of the present and 

prospective uses of AI in radiology reported just one paper on low-dose CT denoising from 2017. Recently, 

several papers on the use of AI for dose optimization have been published, culminating in a narrative review 

on AI for dose optimization in pediatric CT released in 2021 [17]. This indicates that the use of AI for dosage 

optimization in pediatric radiography has lately garnered professional interest. The narrative evaluation 

demonstrated that DLIR allowed a 30–80% decrease in dosage for pediatric CT while maintaining 

diagnostic picture quality. This comprehensive review, which incorporates other research on dose 

optimization in pediatric CT and other imaging modalities, demonstrates that most AI models successfully 
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reduced radiation dosage by 36–70% [1,6,7,10,13,16]. However, three studies included in this systematic 

review indicated that the use of AI might provide a significant decrease in radiation exposure (up to 95%) 

[2,12,14]. The significant disparity in dose reduction efficacy is attributed to the retrospective design of 

numerous studies included [1,4-9,12,15], which precluded the adjustment of examination or scan 

parameters to achieve ultra-low-dose images for assessing the capability of AI models to restore the quality 

of these images to near-original standards [9]. While phantom studies allow for more freedom in 

manipulating examination and scan parameters without ethical or radiation dosage constraints, facilitating 

deeper investigation of AI model potential, their assessment conclusions often lack clinical relevance [44-

48].  

Jeon et al. [2] indicated that Canon AiCE could diminish the CT dose by 95%, achieving contrast-to-

noise ratio values in the DLIR phantom images comparable to those reconstructed via filtered back 

projection; however, the applicability of these findings to clinical practice remains uncertain. Wang et al.'s 

[14] clinical prospective study demonstrated that their proprietary AI denoising model, created via transfer 

learning utilizing 17 standard-dose PET simulated datasets and MRI training datasets, successfully reduced 

the radiation dose by 93.8% for whole-body PET examinations while maintaining sufficient diagnostic 

accuracy. This suggests that utilizing AI denoising can facilitate approximately 90% dose reduction in 

clinical practice, despite the small sample sizes and/or limited training datasets in all included studies, a 

prevalent challenge in AI research within radiology due to the restricted availability of medical images. 

Nonetheless, employing transfer learning (i.e., retraining an existing AI model with a limited dataset, with 

or without architectural modifications) to create an AI model for a similar task could yield dose-

optimization performance on par with commercially available models (Canon AiCE, GE TrueFidelity, etc.) 

that are trained on larger datasets [2,12,14,43]. 

It is anticipated that all but two research used AI models using the deep CNN architecture, given this 

design originated in the 1980s and has since been extensively applied in radiology, with commendable 

performance [1,2,4,5,6,8-16,37]. One research published in 2022 used the more modern and powerful deep 

learning architecture, GAN, which was developed in 2014 [7,49]. A narrative review of the use of GANs in 

radiology published in 2021 [49] indicates that CNN-based denoising models may yield CT images with a 

plastic-like look, akin to those generated by iterative reconstruction, owing to excessive smoothing. 

Conversely, the GAN is a more intricate architecture including a generator and a discriminator, necessitating 

the concurrent training of both, hence increasing the complexity of model generation [37]. Nevertheless, 

the GAN-based denoising models may retain texture features, hence generating pictures of quality 

comparable to standard photos [49]. The GAN-based dose-optimization research included in this 

systematic review also revealed that readers could not distinguish between standard-dose and GAN-

processed pictures while achieving only a 36.6% dosage reduction in their study [7]. This review also 

included dose-optimization research not based on CNN, which used the Gaussian mixture model (GMM) 

architecture [3]. The use of GMM for medical picture denoising was documented before the advent of GAN 

[54]. Nonetheless, its use in radiology is limited, and its clinical efficacy in optimizing pediatric radiology 

doses is still ambiguous [3,17,43,49]. 

This work is the first systematic evaluation of artificial intelligence for radiation dose optimization in 

pediatric radiology, including the imaging modalities of CT, PET/MRI, and mobile radiography, hence 

enhancing the prior narrative review on AI for dose optimization in pediatric CT published in 2021 [17]. 

While it is well recognized that radiation dose burden is a considerable concern in pediatric CT [1-16], the 

radiation exposure associated with a PET scan is comparable to that of a CT examination [14]. Moreover, 

general radiography is the predominant kind of radiological evaluation for pediatric patients, despite its 

low-dose nature [36]. However, according to the ALARA principle, the potential of AI for dose optimization 

in additional modalities using ionizing radiation for pediatric assessments warrants further investigation 

[17,24,25]. Furthermore, because of the limited emphasis and small sample size of the studies analyzed, 

further research on CT, PET, and general radiography should include a larger scale and broader scope [1-

16]. Moreover, additional investigation into the use of GAN for dosage optimization seems justified [7,49]. 
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This review has two primary limitations. The selection of articles, extraction of data, and synthesis were 

conducted by a single author, who has over 20 years of expertise in literature reviews. A new 

methodological systematic study [44] indicates that this structure is suitable, contingent upon the 

reviewer's expertise. Furthermore, only publications authored in English and published within the previous 

five years were included, which may impact the comprehensiveness of this systematic review. This 

evaluation, however, has a broader scope than the last narrative review of AI for dose optimization in 

pediatric CT [17]. Table 1 represents the summary of AI applications in pediatric radiology for dose 

optimization 

Table 1. Summary of AI Applications in Pediatric Radiology for Dose Optimization 

Study Imaging 

Modality 

AI Technique Dose 

Reduction 

Image Quality 

Maintenance 

Key Findings 

Jeon et al. 

[2] 

CT Deep Learning Up to 95% Comparable to the 

standard dose 

Effective in reducing 

dose while 

preserving 

diagnostic quality. 

Wang et 

al. [14] 

PET AI Denoising 

Model 

93.8% Sufficient for 

diagnosis 

Demonstrated high 

efficacy in dose 

reduction with 

maintained image 

clarity. 

Sun et al. 

[39] 

CT 

Angiography 

Deep Learning 

Reconstruction 

36–70% High diagnostic 

integrity 

Highlights the 

potential of deep 

learning in 

enhancing image 

quality while 

minimizing radiation 

exposure. 

Nagayama 

et al. [17] 

CT Deep Learning 

Reconstruction 

30–80% Clinical 

applicability 

confirmed 

Established the 

feasibility of low-

dose CT imaging 

using AI techniques. 

Park et al. 

(2022) 

CT AI-based 

Denoising 

36.6% Indistinguishable 

from standard 

Showed that AI can 

effectively reduce 

radiation dose 

without 

compromising image 

quality. 

 

6. Conclusions 

This comprehensive research indicates that deep convolutional neural networks were the predominant 

artificial intelligence approach and architecture used for radiation dose optimization in pediatric radiology. 

All but three of the included studies assessed the efficacy of AI in dose optimization for abdominal, chest, 

head, neck, and pelvic CT scans; CT angiography; and DECT using DLIR. Most investigations indicated that 

AI might decrease radiation dosage by 36–70% while preserving diagnostic integrity. Although 

commercially available AI models using deep CNNs are predominant, indigenous models, especially those 

employing the more modern and sophisticated architecture of GANs, may provide equivalent performance. 
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Future investigation into the efficacy of AI for dose optimization in pediatric radiology is essential, given 

the limited sample sizes of the research reviewed and the focus on just three imaging modalities: CT, 

PET/MRI, and mobile radiography, excluding all other examination kinds. 
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 الأشعة للأطفال: تكييف بروتوكولات التصوير للأجيال الأصغر سناً 

 المستخلص 

أداة   :الخلفية الطبية لدى الأطفال، ولكنها تواجه تحديات فريدة نظرًا لحساسية الأطفال تعُد الأشعة للأطفال  الحالات  أساسية في تشخيص وعلاج 

 .على تقليل التعرض للإشعاع مع ضمان كفاءة التشخيص (ALARA) "المتزايدة تجاه الإشعاع المؤين. يرُكز مبدأ "أقل ما يمكن تحقيقه بشكل معقول

لتحسين جرعات الإشعاع في التصوير الطبي للأطفال.   (AI) ترُاجع هذه الدراسة بشكل منهجي الأدبيات المتعلقة بتطبيقات الذكاء الاصطناعي :الطرق 

باستخدام كلمات مفتاحية تتعلق بالذكاء الاصطناعي،   (، وغيرهاPubMed  ،ScienceDirect) تم إجراء بحث إلكتروني عبر قواعد بيانات متعددة

 .2017وتقليل الجرعات، وطب الأطفال، مع التركيز على الدراسات المنشورة بعد عام  

ع  حددت المراجعة تقدمًا كبيرًا في منهجيات الذكاء الاصطناعي، خاصة تقنيات التعلم العميق، التي أظهرت إمكانيات في تقليل جرعات الإشعا :النتائج

 وتصوير البوزيترون المقطعي  (CT) % عبر العديد من أساليب التصوير، بما في ذلك التصوير المقطعي المحوسب95% إلى  36بنسبة تتراوح بين  

(PET).   ،أشارت معظم الدراسات إلى قدرة الذكاء الاصطناعي على الحفاظ على جودة الصور التشخيصية مع تقليل التعرض للإشعاع بشكل كبير

 .مما يعالج مخاوف السلامة والفعالية في الأشعة للأطفال

تؤكد النتائج على أهمية دمج تقنيات الذكاء الاصطناعي في مجال الأشعة للأطفال لتحسين جرعات الإشعاع مع ضمان صور عالية الجودة.   :الاستنتاج

  المستقبلية لا تزال التحديات قائمة، بما في ذلك الحاجة إلى التعليم المستمر وتوحيد الممارسات في التصوير الطبي للأطفال. يجب أن تركز الأبحاث  

 .على توسيع نطاق الدراسات لتشمل مجموعة أكبر من أساليب التصوير وأحجام عينات أكبر للتحقق من تطبيقات الذكاء الاصطناعي بشكل شامل

 .أشعة الأطفال، تحسين جرعات الإشعاع، الذكاء الاصطناعي، التعلم العميق، بروتوكولات التصوير :الكلمات المفتاحية 

 


